Advanced Topics in EFT

Homework 3 Solutions

Problem 1:
Reading assignment.

Problem 2:

We have an $SU(N)$ gauge theory, with $N \geq 3$, so we must make sure that that theory has no gauge anomalies; it may or may not have global anomalies. With L fermions in the \Box and R fermions in the \Box the anomaly coefficients are easy to calculate:

$$A = L(N + 4) + R(-1) = 0 \Rightarrow R = (N + 4)L$$

All other anomaly coefficients vanish, thanks to the traceless conditions on the generators of $SU(M)$, for $M = N, L, R$.

Problem 3:

We have the following table:

<table>
<thead>
<tr>
<th>ψ_L</th>
<th>$SU(N)$</th>
<th>$SU(F)_L$</th>
<th>$SU(F)_R$</th>
<th>$U(1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ψ_R</td>
<td>\Box</td>
<td>1</td>
<td>Q_L</td>
<td>\n</td>
</tr>
<tr>
<td>ξ</td>
<td>\Box</td>
<td>1</td>
<td>Q_R</td>
<td>\n</td>
</tr>
<tr>
<td></td>
<td>\Box</td>
<td>1</td>
<td>Q_A</td>
<td>\n</td>
</tr>
</tbody>
</table>

1. In the first step we ignore the ξ field. Notice first that the $SU(N)^3$ gauge anomaly vanishes since the theory has vectorlike pair of fermions. There is a potential nonvanishing anomaly:

$$A_{NNQ} = \frac{F}{2}(Q_L + Q_R)$$

This implies that $Q_L = -Q_R$ to avoid this anomaly. The global anomalies A_{QQQ}, A_Q (the latter being the gravitational anomaly) automatically vanish now. There is still the $SU(F)$ global anomalies:

$$A_{LLQ} = \frac{N}{2}Q_L$$
$$A_{RRQ} = \frac{N}{2}Q_R$$
These only vanish if $Q_L = Q_R = 0$. If we accept the presence of this global anomaly (and why shouldn’t we?!) then this constraint is lifted and there can be a $U(1)$, so long as it’s vectorlike.

Notice also that the sum of the L and R fermions, with the charges equal and opposite, has a vanishing anomaly, while the difference has a nonvanishing anomaly. That is: the vector isospin current is anomaly free, while the axial isospin current is not, exactly as we expect.

2. Now we include the adjoint ξ. Again, the pure gauge anomaly vanishes, since the fermions are in a real representation. We have three nontrivial anomalies (ignoring the $SU(F)$ anomalies):

$$A_{NNQ} = \frac{F}{2}(Q_L + Q_R) + NQ_A$$
$$A_{QQQ} = NF(Q_L^3 + Q_R^3) + (N^2 - 1)Q_A^3$$
$$A_Q = NF(Q_L + Q_R) + (N^2 - 1)Q_A$$

The first and third of these anomaly coefficients vanishing leads to the condition $Q_A = 0$. Then the second anomaly A_{QQQ} leads to the same constraint as before. This should not surprise us too much: after all, the Adj is a real representation, so it should not be able to develop a phase.