Final Exam

Multiple Choice (10 points each) Identify the letter of the choice that best completes the statement or answers the question.

1. A ping-pong ball covered with a conducting graphite coating has a mass of 5.0×10^{-3} kg and a charge of 4.0 μC. What electric field directed upward will exactly balance the weight of the ball? ($g = 9.8$ m/s2)
 a. 8.2×10^2 N/C
 b. 1.2×10^4 N/C
 c. 2.0×10^3 N/C
 d. 5.1×10^6 N/C
 e. 3.4×10^{-3} N/C

2. Two capacitors with capacitances of 1.5 and 0.25 μF, respectively, are connected in parallel. The system is connected to a 50-V battery. What charge accumulates on the 1.5-μF capacitor?
 a. 100 μC
 b. 75 μC
 c. 50 μC
 d. 33 μC
 e. 25 μC

3. If a metallic wire of cross sectional area 3.0×10^{-6} m2 carries a current of 6.0 A and has a mobile charge density of 4.24×10^{28} carriers/m3, what is the average drift velocity of the mobile charge carriers? (charge value = 1.6×10^{-19} C)
 a. 3.4×10^3 m/s
 b. 1.7×10^3 m/s
 c. 1.5×10^4 m/s
 d. 2.9×10^4 m/s
 e. 1.2×10^{-1} m/s

\[I = n g \nu_d A \]
\[A = 3 \times 10^{-6} \text{ m}^2 \]
\[I = 6 \text{ A} \]
\[n = 4.24 \times 10^{28} \text{ /m}^3 \]
\[\nu_d = \frac{I}{n g A} \]
\[\frac{6 \text{ C/s}}{1.6 \times 10^{-19} \text{ C} \cdot 4.24 \times 10^{28} \text{ /m}^3 \cdot 3 \times 10^{-6} \text{ m}^2} \]
\[2.9 \times 10^{-4} \text{ m/s} \]
4. If $E = 20 \text{ V}$, at what rate is thermal energy being generated in the 20-Ω resistor?

First find total current,

\Rightarrow Find equivalent resistance.

\[3 \text{ } 30 \Omega \text{ in parallel } = 10 \Omega \]

Then in series \[40 \Omega + 10 \Omega + 20 \Omega = 70 \Omega \]

So \[I = \sqrt{\frac{E}{R_{eq}}} = \frac{20\text{ V}}{70 \Omega} = 0.286 \text{ A} \]

Then \[\text{Power dissipated } = I^2 R = (0.286)^2 \times 20 \text{ W } = \boxed{1.6 \text{ W}} \]

5. A 100-m-long wire carrying a current of 4.0 A will be accompanied by a magnetic field of what strength at a distance of 0.050 m from the wire? (magnetic permeability in empty space $\mu_0 = 4\pi \times 10^{-7} \text{ T} \cdot \text{m/A}$)

\[B_{\text{wire}} = \frac{\mu_0 I}{2\pi r} = \frac{4\pi \times 10^{-7} \times 4}{2\pi} \frac{4}{0.050 \text{ m}} \text{ Tesla} = \boxed{1.6 \times 10^{-5} \text{ T}} \]

6. A circuit consists of a 10-mH coil, a 12-Ω resistor, a 6.0-Ω resistor, a 9.0-V battery and a switch, all in series. What is the time constant of this circuit?

\[\tau = \frac{L}{R} \]

\[R = R_1 + R_2 = 18 \Omega \]

\[\therefore \tau = \frac{10 \times 10^{-3} \text{ H}}{18 \Omega} = \boxed{5.6 \times 10^{-4} \text{ sec.}} \]
7. A radio wave transmits 1.2 W/m^2 average power per unit area. What is the peak value of the associated magnetic field? ($\mu_0 = 4\pi \times 10^{-7} \text{T} \cdot \text{m/A}$ and $c = 3.00 \times 10^8 \text{m/s}$)

\[P = \frac{c \, B_{\text{max}}^2}{2 \mu_0} \Rightarrow B_{\text{max}} = \sqrt{\frac{2 \mu_0 \, P}{c}} \]

\[P = 1.2 \text{ W/m}^2, \text{ solving yields} \]

\[B_{\text{max}} = 1.0 \times 10^{-7} \text{T} \]

- a. $1.0 \times 10^{-7} \text{T}$
- b. $8.4 \times 10^{-3} \text{T}$
- c. 1.2T
- d. 30T
- e. 51T

8. A rocket ship is 80.0 m in length when measured before leaving the launching pad. What would its velocity be if a ground observer measured its length as 60.0 m while it is in flight? ($c = 3.00 \times 10^8 \text{m/s}$)

\[L_p = 80.0 \text{ m} \quad L_{\text{flight}} = 60.0 \text{ m} \]

\[\gamma = \frac{L_p}{L_{\text{flight}}} \]

\[\gamma = \frac{1}{\sqrt{1 - (\frac{v}{c})^2}} \quad \frac{c}{v} = \sqrt{1 - \frac{v^2}{c^2}} = 0.66 \Rightarrow v = 1.98 \times 10^8 \text{ m/s} \]

- a. $0.980 \times 10^8 \text{ m/s}$
- b. $1.15 \times 10^8 \text{ m/s}$
- c. $1.33 \times 10^8 \text{ m/s}$
- d. $1.98 \times 10^8 \text{ m/s}$
- e. $2.55 \times 10^8 \text{ m/s}$

9. Starting from rest, an electron accelerates through a potential difference of 40 V. What is its de Broglie wavelength? ($h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}, m_e = 9.11 \times 10^{-31} \text{ kg}, \text{ and } 1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$)

\[\lambda = \frac{h}{p} = \frac{h}{mv} \quad \text{Need to find } v. \]

\[\frac{1}{2} mv^2 = eV = e \times 40 \text{ V} \Rightarrow v = \sqrt{\frac{2 \times 40 \text{ eV}}{m_e}} = 3.75 \times 10^6 \text{ m/s} \]

\[\lambda = \frac{h}{m_e v} = 1.9 \times 10^{-10} \text{ m} \]

- a. $1.1 \times 10^{-10} \text{ m}$
- b. $1.5 \times 10^{-10} \text{ m}$
- c. $1.9 \times 10^{-10} \text{ m}$
- d. $2.3 \times 10^{-10} \text{ m}$
- e. $3.6 \times 10^{-10} \text{ m}$

10. Tritium is radioactive with a half-life of 12.33 years decaying into ^3He with low-energy electron emission. If we have a sample of 3.00×10^{15} tritium atoms, what is its activity in decays/second? (1 year = 3.15×10^7 s)

\[R = \text{activity} = \frac{\Delta N}{\Delta t} = \lambda N \quad \text{but} \quad \lambda = \frac{\ln 2}{T_{1/2}} \]

\[R = \frac{N \ln 2}{T_{1/2}} \quad \text{but} \quad T_{1/2} = 12.33 \text{ years} \]

\[R = 5.35 \times 10^9 \text{ sec}^{-1} \]

- a. $4.20 \times 10^{10} \text{/second}$
- b. $5.35 \times 10^9 \text{/second}$
- c. $3.69 \times 10^7 \text{/second}$
- d. $6.64 \times 10^7 \text{/second}$
- e. $7.72 \times 10^6 \text{/second}$
11. A hydrogen atom in the ground state absorbs a 12.75 eV photon. To what level is the electron promoted? (The ionization energy of hydrogen is 13.6 eV.)
 a. \(n = 2 \)
 b. \(n = 3 \)
 c. \(n = 4 \)
 d. \(n = 5 \)
 e. \(n = 6 \)

 \[E_n = \frac{-13.6 \text{ eV}}{n^2} = -0.85 \text{ eV} \quad \Rightarrow \quad n^2 = \frac{13.6}{0.85} = 16 \]
 \[\Rightarrow \quad n = 4 \]

12. Calculate the energy released in the following fusion reaction where reactants are \(^6\text{Li}\) and a neutron; products are \(^4\text{He}\) and \(^1\text{H}\). (atomic masses: \(^6\text{Li}, 6.01512\); neutron, 1.00867; \(^4\text{He}, 4.00260\); \(^1\text{H}, 3.016031\); also 1 u = 931.5 MeV/c^2)
 a. 2.95 MeV
 b. 4.81 MeV
 c. 8.63 MeV
 d. 17.2 MeV
 e. 34.5 MeV

 \[\Delta m = 0.005159 \text{ u} \quad E = mc^2 = \Delta m \cdot 931.5 \text{ MeV/c}^2 \]
 \[E = 4.81 \text{ MeV} \]

Short Answer (15 points)
Show all your work in solving this problem.

13. If a fossil bone is found to contain \(\frac{1}{16} \)th as much Carbon-14 as the bone of a living animal, what is the approximate age of the fossil? (half-life of \(^{14}\text{C}\) = 5730 years)

 \[\frac{N}{N_0} = \frac{1}{16} = e^{-\lambda t} \quad \Rightarrow \quad 16 = e^{\lambda t} \quad \Rightarrow \quad \ln 16 = \lambda t \]
 \[\Rightarrow \quad t = \frac{\ln 16}{\lambda} = \frac{\ln 16}{\ln 2}, T_{1/2} = 4 \cdot T_{1/2} \]

 \[\lambda = \frac{\ln 2}{T_{1/2}} \]

 \[\text{Age} = 4 \cdot 5730 \text{ years} = 22920 \approx 22900 \text{ years} \]